1-800 _
pyz-4ez5)

.. ! . I‘- - . j I:Il

M851 — USB Data Link lIronman
M851 “Packager” API
Design & Usage Guide
Specification Number: 1-S-XXXX-H
April 11, 2003

Brigham W. Thorp
Timex Corporation

DOCUMENT REVISION HISTORY

| REVISION: A | DATE: 7/17/2002 | AUTHOR: Brigham W. Thorp
AFFECTED PAGES DESCRIPTION
All Created document.
| REVISION: B DATE: 8/08/2002 | AUTHOR: Brigham W. Thorp
AFFECTED PAGES DESCRIPTION
17 GETITEM types referreed to Occasions
Various Section references were updated
14 Added enum definition for ALARM STATUS
| REVISION: C DATE: 8/13/2002 | AUTHOR: Brigham W. Thorp
AFFECTED PAGES DESCRIPTION
Various Changes to some of the structures and added some additional comments
| REVISION: D DATE: 8/23/2002 | AUTHOR: Brigham W. Thorp

AFFECTED PAGES

DESCRIPTION

6 TUDLAddTODItem was missing the DateFormat specifier, so this was added
| REVISION: E DATE: 9/10/2002 | AUTHOR: Brigham W. Thorp
AFFECTED PAGES DESCRIPTION
36 Added more information about creating sound data for sending to the API. Used a
modified version of the WristApp SDK documentation.
15,16 Modifications to the way that the TUDLGetAlarmltem and TUDLGetApptltem
functions are defined. This was due to ongoing changes to the packager.
| REVISION: F DATE: 10/27/2002 | AUTHOR: Brigham W. Thorp

AFFECTED PAGES

DESCRIPTION

26 Modified values for ScheduleType

15 Added description for TUDLSetTimeLine

8 Added TUDLForceFullDownload API call

30 Removed TIMEX ERR _INV_RESOURCE since PIM’s now handle their own

resource checking

Timex Corp.

Confidential Proprietary Information

-i-

| REVISION: G | DATE: 02/05/2003 | AUTHOR: Brigham W. Thorp

AFFECTED PAGES DESCRIPTION
5 Added TUDLSetAppTitle API call
| REVISION: H | DATE: 04/11/2003 | AUTHOR: Brigham W. Thorp
AFFECTED PAGES DESCRIPTION
38 Changed sounds section to refer to frequencies as Hz...not KHz.

Timex Corp. Confidential Proprietary Information Hi-

Timex Corp.

AN i

10.

Table of Contents

INTRODUCTION.......ooitiietie ettt ettt et e et e et e e ae e e vt e eteeeteeenseeeseeenseeenseeenseseseeensessteeeeneeans 1
1.1. SCOPC etteitieeiee ettt ettt ettt e et e et e et e et e et e e be e et e e e baeeaee e taeeteeetbeetaeetaeeseeerbeenneeenns 1
1.2. Watch Back@roundc.ooviiiiiiieiieieeii ettt be e s sneenseens 1
APPLICATIONS ..ottt ettt te e et e e te e e tae e tae e tee e baeeabaeebaeenteeesseeseeensaeenseean 2
INSTALLING THE SDKoootiiitiieiee ettt ete e et eaeeeveeeneeeeneeeeneeeenseeenreesnreeenreens 3
WRISTAPPS ...t e et e e et e et e e eae e e et e e te e e eteeeeteeeeteeeeaeeeeteeeeteseereeeseean 3
PERIODIC TASKS ...ttt ettt e e et e e et e e e tve e eaaeeetseeeteeeteeeeseeetaeeeseeentreeesreenes 4
APPLICATION PROGRAMMING INTERFACES ..ottt 5
6.1. TUDLSEtDEVICETYPE ...ttt sttt ettt et ettt e sneeneeeeeenes 5
6.2. TUDLSELAPDPTIIE ...veeeeieeiie ettt ettt ettt et eeve e st esae e ssbeessaeessbaessseenssaensneenns 5
6.3. TUDLSELOPHONevvieieiieiieieeieeettesteete et eeaesaesteesaeesseesseeseesseessaesseessesssesssesseensesssennes 6
6.4. TUDLGEIOPUONc..eertieiieeieteeiteeitesiteteetesaestesseesseeseeseesseesseesseensesnsesssesseessesnsesssesnes 6
6.5. TUDLSENADALA ... e 6
6.6. TUDLGEEDALAeeeeeetiiieeeee ettt e e et e et e e et a e e aaeeeeaaeas 7
6.7. TUDLGEtDEVICEVEISIONeecvvieiieeiie et eteeeetee et et eeteeeeveeeaeeeveeeaaeesaveeerseestseeesneenes 7
6.8. TUDLSROWDIALOZ.....c.vieiieiiieieeiieeiieteie ettt ettt ettt e e entesnaesnaesseesseenseenns 8
6.9. TUDLForceFullDoWnload.............cccooiiiuiiiiiieeeeeee e 8
6.10. TUDLAGAILEM ...oooviiieiectee ettt ettt ettt et e e v e et e eeaeeenreeeneeennes 8
6.11. TUDLAAATODIEEIMoeoviiiiiieiii ettt ettt ettt ettt et evee et eeaeeeaveeeneeenns 9
6.12. TUDLAAACRIONOItEML.......eiiiiiiiiiiiiiciee ettt esane e 9
6.13. TUDLAAATIMEITECIM.......eeeiiiiiiieeeee e 10
6.14. TUDLAAAINtTIMEITtOMoooiiiiiiiiiiceiie e e e 11
6.15. TUDLAAAAIAMIEMooviiiiiiiiii ettt et eeenes 11
6.16. TUDLAAAADPPLIEEIL.....oeouiieieiieiieieeieete ettt ettt be e seaesnaesseenseenseenns 12
6.17. TUDLAAANOLEItEM......cueiiiieieeeeeee e e 12
6.18. TUDLAAAOPUHONIEEM ...ecuviiiiiieiiieiieeiie et ete et eieeeteeeeee et e eaee et e saeeenseeenseeennes 12
6.19. TUDLAAAOCCASIONIEEIM......cuviiiuiiiiiiieeiie ettt ettt e ereeeenes 13
6.20. TUDLAAACONACIITEMveieuvieeeiiieeiieeiieecie ettt et e eta e et eeeaaeetreeaeeereeenneeenns 14
6.21. TUDLAAASChedUuleItem...........oooiieiiiiiiieeeeee e 14
6.22. TUDLAAASOUNAITEMoiiiiiiiiieiiie e ettt eeaaee e 15
6.23. TUDLSEtTIMELINEuveieuiiiiiiiieiiiecie ettt ettt ettt et e e et e eeaeeeteeeneeenns 15
6.24. TUDLGEIIEEM......eeiiiiiiiieiiie ettt ettt ettt tte et e e etaeeve e ebeeeaveeevaeeareseaseesareesaseenenas 15
6.25. TUDLGEtCRIONOItEIM.......oooiiuiiiieeieie e e eaeeeens 16
6.26. TUDLGELAIAIMILEIM.oooviiiiiieiieceee ettt et et etee e eaeeeeteeeeaeeeeaeeeeaeeeereeeeaeeenns 17
6.27. TUDLGEAPPLILEIM...ccotiiiiiiiiieiiesieee ettt ettt e et e st esabeesaseesnseesnnes 18
6.28. TUDLGEINOLEILEIMcciiiiiieiiiieeiiie ettt e et e e e e st e e e ere e e eeaabaeesasseaeas 19
6.29. TUDLREMOVEILEMcouiiiiiiiiieeeee e 19
6.30. TUDLREMOVEAIIILEIMS.veeivieeiieeeeeeee et ettt ettt ettt eete e et e eeaeeeaeeeeaeeenreeeneeeenes 19
6.31. TUDLREMOVEAILAPDSvievieeietietieieeteeteseesteesteesveeesesseesseesseesseessesssessaesseessesssesseesses 20
6.32. TUDLREeMOVEPEIIOAICTASKcccvvievieiiiieiieciiiecie ettt ettt et e 20
6.33. TUDLAGQAADD ottt ettt ettt beste e e st eseeneassesseeseeseeseeneensansessens 20
6.34. TUDLAAAADPPEXL c..oiitiiitieiieieeteee ettt ettt ettt beeebeetbesraestaesaeesseenseenns 21
6.35. TUDLAAAPEeriodiCTasKccceeeiiiiiieeiie ettt et et eevee e e 21
LT T T N U1 5) 3] 27T TR 22
6.37. Structure DefINItiONS..........oooiiiiiiiie e e e e ean 22
6.38. Enum DefinitionSooouiiiiiiiiiieiie e e et an 26
VISUAL BASIC NOTES ...ttt ettt ettt ettt et ettt e e ataeevaeeavaesavaeeanee s 30
RETURN CODES. ... oottt ettt ettt et tb e e at e e s tae e ase e tbeebeeebaeenseeesaeeaseeensaeansees 30
OPTION VALUES ...ttt ettt ete e e e e e ettt e enae e et e e eaeeeeteeeeaeeeeaeeeeseeeeteeeenreens 33
CREATING SOUNDS ...ttt ettt e e e e e eteeeteeeveeeae e eveeeteeeveeeareeenreeeseeens 36

Confidential Proprietary Information

V-

1. INTRODUCTION

1.1. Scope

This document describes the API’s (application programming interfaces) that are present to communicate
between the PC and the USB Data Link watch. These API's may be used to create an application that
interfaces to the watch similarly to the way the Timex software interfaces with the watch.

1.2. Watch Background

The USB Data Link watch is a product developed by Timex Corporation that lets you store various types of
information on your wrist, including appointments, alarms, contacts, and notes as an example. The watch
connects to the PC using the supplied interface cable. Once connected, the software is then able to read and
write information to and from the watch.

The standard watch software consists of multiple modules that all work together. The diagram below shows
these modules and how they are connected.

Perzonal Wi st A
Im ijrIT FExpot | o pel Irformtion le—se| Coniguraion
ugHnE Marscer (P I P lucHlre

Timex Packager
[DLL)

LEE

Timex =B

Data Link
Wyistch

The PIM software that comes with the watch allows you to enter and store information such as phone
numbers and appointments and then download them to the watch. This software also controls some of the
other settings such as sounds, options, and modes present in the watch.

The Import and Export DLL’s allow developers to write programs that can import and export data to and from
watch modes. For example, an import DLL could be written to import appointments from Lotus Domino into
the appointment editing facility within the PIM. This module could also support exporting appointments back
to Lotus Domino

The Application Configuration DLL’s are plug-in programs that are distributed by WristApp developers to
allow you to configure certain options for the specified WristApp. For example, the World Time WristApp that
ships with the product has a configuration DLL that allows you to configure the time zones that are present in
the World Time application.

The packager is a DLL written in ‘C++’ that handles all low-level USB communication between the watch and
the PC. By utilizing the packager, it is possible to add and remove data and applications to and from the

Timex Corp. Confidential Proprietary Information -1-

Timex Corp.

watch respectively by following a certain set of API calls. The file has the name TUCP.DLL which stands for
Timex USB Communications Protocol.

This document describes how to access functions within the TUCP DLL, which contains all of the low-level
USB communications as well as the API's to modify data in the watch.

2. APPLICATIONS
The Timex USB watch contains the following applications in ROM:

o Time of Day — This is the normal timekeeping display. Three time zones can be tracked and each time
zone supports displaying the week of the year, or the day of the week. Also, each time zone can have
different time and date formats such as 12 hour versus 24 hour time display, and MM-DD-YY, DD-MM-
YY, or YY-MM-DD formats.

e Alarms — The alarm mode can store multiple alarms (as much as the watch memory will allow) with
each alarm capable of being set to a different time. Typically, alarms are used to wake you up or remind
you to take your medication.

e Appointment — The appointment mode is similar to alarm mode, however you can set an appointment
to notify you before the appointment begins. For example, you might want a 30 minute prenotification for
a 3:00 doctor’s appointment to give you time to drive there.

e Occasion — Occasions can be set to keep track of birthdays, anniversaries, holidays, vacations.

¢ Contact — Contact mode is where you can store names, phone numbers, and other information such as
home or work addresses as well as e-mail addresses.

e Schedule — Schedule mode is a mode that allows you to store schedules of items such as television
schedules, sports team schedule, or class schedules. The schedules support either Day of the week and
Time, Date and Time, or Date only formats.

o Note — Note mode can be used to store notes up to 100 characters long. Notes can be used to store
phone numbers entered manually on the watch, as well as credit card numbers and passwords as an
example.

e Chronograph — Chronograph mode is a stopwatch that supports storing and saving workouts.

e Countdown Timer — Countdown Timers allows you to set a time to countdown from. When the time
expires, an alert is sounded.

¢ Interval Timer — Interval Timers are very similar to countdown timers, however when the first timer in
sequence completes, the next timer in sequence that is not a zero is started automatically.

e Option — Option mode lets you set items in the watch such as the Night-Mode and Hourly chime
functionality, as well as the button beep setting.

¢ Synchro Timer — The Synchro Timer starts automatically when the chronograph or timer (countdown or
interval) is started. It continues to count up even when the chronograph and/or timer is stopped.

The above applications contain fixed code in the watch, however they can be enabled or disabled as you
wish using specific API calls. The above watch modes use three types of memory. First is the ROM where all
of the built-in application code resides. Note that disabling ROM based application will have no effect on
ROM based memory since ROM is fixed for the device. The databases for the above applications are all
stored in EEPROM. Finally, each application uses a certain amount of RAM for processing, so RAM can also
be saved by not enabling certain applications.

Confidential Proprietary Information -2-

3. INSTALLING THE SDK

To setup the SDK, you will need to add the TUCP.LIB to your project if you are using Visual C++ 6.0. In
addition, the TUCP.H file should be included as it defines the structures necessary for using the API’s. Once
you have compiled your application, the TUCP.DLL should be placed in the same directory as your
executable.

If you are using Visual Basic, you must create a Declare Function XX entry to access the API calls. Please
refer to the Visual Basic section for information on how to define the API’s.

4. WRISTAPPS

Other applications, called WristApps, may be downloaded to the watch to add functionality. WristApps
contain specialized code to run in the watch, and in some cases have an associated database. Both the
code and database are stored in EEPROM once they are downloaded. When the WristApp becomes active,
the code is copied from the EEPROM and runs in RAM.

Adding and deleting data from the watch has an effect on memory. Please check the device documentation
to determine how much EEPROM memory is available for the product (the initial version of the device
contains 32 Kilobytes of EEPROM).

Please note that certain watch modes use resources. The resources available in this watch are:

Resource Type Maximum Offset (Bytes) | Notes
Allowed

Time of Day 4 1 Unavailable to other applications. Used by
built in Time of Day mode (1 for each time
zone and 1 for the popup clock)

Backup 2 2 Typically, 1 for appointment and 1 for
alarm mode.

Time Zone Check 5 3 2 for appointment (peek and popup), 1 for
alarm, and 2 extra

Timer 3 4 2 used by interval timer and 1 for the
countdown timer

Stopwatch 2 5 2 for chronograph mode (1 for split, 1 for
lap)

Synchro 1 6 1 for Synchro mode

If you try to instantiate an application and you are using more resources than available, the communications
will fail.

WristApp’s have a minimum of two files associated with them. First is the code file, which contains all of the
executable code that runs when the WristApp becomes active in the watch. Next is the parameter file. The
parameter file contains information required by the watch that determines how the watch behaves in the
system and its resource requirements. Typically the filenames for the two files are
WristAppName_code_018.bin and WristAppName_par_018.bin for the code file and parameter file
respectively. The 018 refers to the fact that the WristApp was compiled to execute only in version XXX018 of
the firmware.

When downloading WristApps, the resource usage needs to be checked in the parameter file. The offsets
specified above are the locations (from a zero based index) into the parameter file where the resource usage
is stored. Please refer to the WristApp Design Guide for more information.

Timex Corp. Confidential Proprietary Information -3-

Timex Corp.

5. PERIODIC TASKS

In addition to WristApps, another application type called a periodic task may be downloaded to the watch.
These are very similar to WristApps, however there is no parameter file associated with it (only code). The
periodic task is called every second, minute, hour, and day rollover. The device comes with periodic tasks for
changing the way the minute is displayed when changing. Other periodic tasks that could be written are
programs that handle the automatic change from Daylight Savings Time to Standard Time and vice-versa.

Confidential Proprietary Information -4-

Timex Corp.

6. APPLICATION PROGRAMMING INTERFACES

Typically, the order of calling the API functions is to read all of the data first and process that data according
to your applications data (e.g. merging or displaying the modified items). Next, all of the applications that the
user would like to put in the device are then added. Once the applications have been added, all of the items
for the particular mode are then added to the application. Finally, the WristApps and their associated data
are then added via the API.

Finally, once all of these calls have been performed, the data is written to the watch. The packager handles
partitioning the watch memory so that modifications to a few items will not require downloading all modes
and data back down to the watch.

Many of the API calls have reserved variables. These variables are not currently used, so passing a 0 to
them is necessary. The reserved variables are setup for future expansion of the API set.

Most of the API’s refer to structures that are defined in section 6.35. Also, many enumerations are also used
in the following API calls, and these are defined in section 6.36. You may want to bookmark these sections
for easy reference.

Please note that the following API definitions used to communicate with the device are shown with C/C++
references.

6.1. TUDLSetDeviceType

int TUDLSetDeviceType(WORD wNewDeviceType);

Purpose:
Selects a new device to communicate with. This should be done when the program first starts up. The Timex
Ironman USB watch is selected by default, so if this is the only device you will be using, then this call does not have
to be made.

Parameters:
wNewDeviceType — Value specifying the new device type. DL_DEV_851 (which has the value of 1) is an example
defined parameter.

Returns:
0 - Success
<0 - Error
>0 - Warning

Example:
TUDLSetDeviceType(DL_DEV_851);

6.2. TUDLSetAppTitle

int TUDLSetDeviceType(char* szTitle);

Purpose:
Allows you to create a custom application title which is shown on the top of dialog boxes.

Parameters:
szTitle — Null terminated string identifying the application title.

Returns:
0 - Success
<0 - Error
>0 - Warning

Confidential Proprietary Information -5-

Example:
TUDLSetAppTitle(“My application”);

6.3. TUDLSetOption

int TUDLSetOption(WORD wSetWhat, DIWORD dwToWhat, DWORD dwExtra=0);

Purpose:
Sets options for the selected device

Parameters:
wSetWhat — The option you wish to set. These are defined as the DL_OPT value. Refer to Section 9
for information about these options.
dwToWhat — The value that you want to set the option to
dwExtra — Some options may require more than one value to set. The dwExtra variable provides this capability.

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
int nRc;
/I Set the chrono format to have the lap on top and split on bottom of the display
nRc = TUDLSetOption(DL_OPT_DEV_CHRONO_FORMAT, CHRONOFORMAT_LAP_SPLIT, 0);
I/l Set the chrono to have 200 laps
nRc = TUDLSetOption(DL_OPT_DEV_CHRONO_NUM, 200, 0);

6.4. TUDLGetOption

int TUDLGetOption(WORD wGetWhat, LPDWORD IpdwRetVal, DIWORD dwExtra=0);

Purpose:
Gets options from the selected device. These can include the maximum number of entries allowed for a given
mode’s items, as well as getting the total amount of memory used by the device.

Parameters:
wGetWhat — The option you wish to retrieve. These are defined as the DL_OPT values. Refer to Section 9
for information about these options.
IpdwRetVal — This is the option value returned from the packager
dwExtra — Some options may return more than one value. The dwExtra variable provides this capability

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
DWORD dwAlmMsgLen;
/I Get the maximum length of the alarm mesages
TUDLGetOption(DL_OPT_DEV_ALARM_LEN, &dwAlmMsgLen);
CString sMsg;
/I Make sure we only take the leftmost max characters from the current alarm message
sMsg = sAlarmMessage.Left(dwAlmMsgLen);

6.5. TUDLSendData

Timex Corp. Confidential Proprietary Information -6-

int TUDLSendData(HWND hWnd);

Purpose:
Build the transmission file and send it out the selected port

Parameters:
hWnd - handle to the parent window

Returns:
0 - Success
<0-Error
> 0 - Warning

Example:
int nRc = TUDLSendData(hWnd); // Send all data
/I If we receive success, close the window
if (NRc == TIMEX_SUCCESS)
OnOK();
else
MessageBox(hWnd, "There was an error during transmission ", "", MB_OK);

6.6. TUDLGetData

int TUDLGetData(HWND hWnd);

Purpose:
Retrieves the data from the device from the selected port

Parameters:
hWnd - handle to the parent window

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
int nRc = TUDLGetData(hWnd);
if (nRc == TIMEX_SUCCESS)

ReadAndDisplayChrono(); // Display the chrono data stored in the watch
}

6.7. TUDLGetDeviceVersion

int TUDLGetDeviceVersion(LPSTR IpszDevice1lD, WORD wDev1IDLen,
LPSTR IpszDevice2ID, WORD wDev2IDLen);

Purpose:
Returns the IDs of the most recently connected device

Parameters:
IpszDevice1ID - pointer to a string to receive the main device ID.
wDev1IDLen - maximum number of characters to copy into the string pointed-to by IpszDevice1ID.
IpszDevice2ID - pointer to a string to receive the secondary device ID.
wDev2IDLen - maximum number of characters to copy into the string pointed-to by IpszDevice2ID.

A NULL character ("\0') will always be installed in the last character position.
Returns:

0 - Success
<0 - Error

Timex Corp. Confidential Proprietary Information -7-

Timex Corp.

> 0 - Warning

Example:
IpstrDev1 = new char[256];
IpstrDev2 = new char[256];
TUDLGetDeviceVersion(lpstrDev1, 256, IpstrDev2, 256);
if (strlen(IpstrDev1) = 0)
m_sCypressVer.Format("Epson Version %s", IpstrDev1);
if (strlen(IpstrDev2) = 0)
m_sEpsonVer.Format("Cypress Version %s", IpstrDev2);

6.8. TUDLShowDialog
int TUDLShowDialog(BOOL bShow);

Purpose:
Displays or hides the progress dialog that is seen during communication. Call before communication occurs (not
during).

Parameters:
bShow — TRUE if the dialog is to be displayed during communication. FALSE if the dialog is to be hidden. By default,
the
packager shows the progress dialog.

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLShowDialog(FALSE); /I Hide the communications dialog

6.9. TUDLForceFullDownload

int TUDLForceFullDownload(void);

Purpose:

Forces the packager to perform a complete download and bypass the partial download feature. The partial download
feature reduces the time it takes to download, however in some cases it may be necessary to download completely (e.g.
when a new version of a WristApp is being downloaded).

Parameters:
None

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
Int nRet = TUDLForceFullDownload ();

6.10.TUDLAddItem
int TUDLAddItem(Appindex nAppindex, BYTE bApplinstance, void* pltemStruct);

Purpose:
Adds an item to the packager for download to the device

Confidential Proprietary Information -8-

Parameters:
nApplndex - type of the item being added to the database. Refer to Section 6.35 for the Applndex definition
bApplnstance - instance of the application
pltemStruct - application specific item structure

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
CAlarm pltem; /I Created from database
sMsg = pltem->m_sMessage.Left(m_dwAlmMsgLen);
m_Alarmltem.wltemID = witemID++;
m_Alarmltem.pszText = (LPSTR)(LPCTSTR)sMsg;
m_Alarmltem.cchTextMax = sMsg.GetLength();
m_Alarmltem.nStatus = (AlarmStatus)pltem->m_nEnable;
m_Alarmltem.nFreq = (AlarmFrequency)(pltem->m_nFreq+1);
m_Alarmltem.bHour = (BYTE)pltem->m_oDateTime.GetHour();
m_Alarmltem.bMinute = (BYTE)pltem->m_oDateTime.GetMinute();
TUDLAddItem(ALARM_APP, ninstance, (void*)&m_Alarmltem);

6.11. TUDLAddTODItem

int TUDLAJATODItem(BYTE bApplinstance, BYTE bltemID, LPCSTR pszText, int cchTextMax, LONG ITimeOffset,
TimeZonelndex nTZIndex, TimeFormat nTimeFormat, DateFormat nDateFormat, BOOL boolDSTObserved, BOOL
boollsinDST, BOOL boolShowWeekNumber, BYTE b1stDayOfWeek);

Purpose:
Adds a Time of Day item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
bltemID — the ID of the item you wish to add. Must be unique
pszText — the 3 character city code
cchTextMax — the length of the 3 character city code
ITimeOffset — the offset in seconds from GMT
nTZIndex — the index into the time zone table (leave 0)
nTimeFormat — the time format — 0 = AM/PM, 1 = 24 hour
nDateFormat — the date format — 0 = DMY, 1 = YMD, 2 = MDY
boolDSTObserved — TRUE if the time zone observes daylight savings time
boollsInDST — TRUE if the time zone is currently in daylight savings time
boolShowWeekNumber — TRUE if the week number should be displayed or FALSE to display
the day of week
b1stDayOfWeek — 0 if the first day of the week is Sunday. 1 if the first day of the week observed is
on Monday
Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLAddTODItem(0, 1, “NYC”, 3, 18000, 0, 0, TRUE, TRUE, FALSE, 0)

6.12.TUDLAddChronoltem

int TUDLAddChronoltem(BYTE bAppinstance, WORD witemID, WORD wWorkoutID, BYTE bType, BYTE
bNumLaps, DATE dtDateTime, BYTE bLapNum, BYTE bHour, BYTE bMinute, BYTE bSecond, BYTE
bHundredth);

Timex Corp. Confidential Proprietary Information -9-

Purpose:
Adds an chronograph item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
bltemID — the ID of the item you wish to add. Must be unique
bWorkoutD — the ID of the workout you wish to add. Must be unique
bType — 1 if adding a workout, 2 if adding a lap for a workout
bNumLaps — 0 if adding a lap, otherwise any number < 200 if adding a workout
dtDateTime — The date of the workout
bLapNum — The current lap number
bHour — The current hour for the current split
bMinute — The current minute for the current split
bSecond — The current second for the current split
bHundredth — The current hundredth for the current split

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
COleDateTime timeNow;
timeNow = COleDateTime::GetCurrentTime();
DATE dtDate = DATE(timeNow);
/I Add a workout with 2 laps/splits
/I Note that each lap is a running total of all the previous laps plus the current lap. This is defined as a split
TUDLAddChronoltem(0, 0, 0, 1, 2, dtDate, 1, 0, 0, 3, 69);
TUDLAddChronoltem(0, 1, 0, 2, 2, dtDate, 1, 0, 0, 2, 07);
TUDLAddChronoltem(0, 2, 0, 2, 2 dtDate, 2, 0, 0, 3, 69);
/l Add a workout with 1 lap/split
TUDLAddChronoltem(0, 0, 1, 1, 1, dtDate, 1, 0, O, 1, 58);
TUDLAddChronoltem(0, 1, 1, 2, 1, dtDate, 1, 0, 0, 1, 58);

6.13.TUDLAddTimerltem

int TUDLAddTimerltem(BYTE bApplinstance, WORD wltemID, LPCSTR pszText, int cchTextMax, BYTE bHour,
BYTE bMinute, BYTE bSecond, TimerAction nAction, BYTE bNumOfReps, BYTE bOptions);

Purpose:
Adds a Timer item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
wltemID — the ID of the item you wish to add. Must be unique
pszText — The text of the timer message
cchTextMax — The size of the timer message in pszText
bHour — The number of hours to set for the current timer
bMinute — The number of minutes to set for the current timer
bSecond — The number of seconds to set for the current timer
nAction — 0 to stop at end, 1 to repeat at end, or 2 to start the chrono at the end
bNumOfReps — 0 when adding a standard timer
bOptions — 0 for no halfway reminder alert, 1 to enable the halfway reminder alert. The halfway reminder alerts you
when the timer has reached the halfway point, if the timer is set for more than 1 minute.

Returns:
0 - Success
<0 - Error
> 0 - Warning

Timex Corp. Confidential Proprietary Information 10-

Example:
TUDLAddTimerltem(0, 1, “TIMER #1”, 8, 1,0, 0, 0, O, 1);

6.14. TUDLAddIntTimerltem

int TUDLAddIntTimerltem(BYTE bAppInstance, WORD wltemID, LPCSTR pszText, int cchTextMax, BYTE bHour,
BYTE bMinute, BYTE bSecond, TimerAction nAction, BYTE bNumOfReps, BYTE bOptions);

Purpose:
Adds an Interval Timer item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
wltemID — the ID of the item you wish to add. Must be unique
pszText — The text of the timer message
cchTextMax — The size of the timer message in pszText
bHour — The number of hours to set for the current timer
bMinute — The number of minutes to set for the current timer
bSecond — The number of seconds to set for the current timer
nAction — O to stop at end, 1 to repeat at end, or 2 to start the chrono at the end
bNumOfReps — The number of times to repeat each series of timers
bOptions — 0 for no halfway reminder alert, 1 to enable the halfway reminder alert

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLAddIntTimerltem(0, 1, “TIMER #1”, 8, 1,0, 0, 0, 2, 1);

6.15. TUDLAddAIlarmltem

int TUDLAddAlarmitem(BYTE bApplnstance, WORD witemID, LPCSTR pszText, int cchTextMax, AlarmStatus
nStatus, AlarmFrequency nFreq, BYTE bHour, BYTE bMinute, DATE dtReserved1);

Purpose:
Adds an Alarm item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
wltemID — the ID of the item you wish to add. Must be unique
pszText — The text of the alarm message
cchTextMax — The size of the alarm message in pszText
nStatus — Please refer to the AlarmStatus enum in Section 6.35 for information about this value
nFreq — Please refer to the ALarmFrequency enum in Section 6.35 for information about this value
bHour — The hour to set for the alarm
bMinute — The minute to set for the alarm
dtReserved1 — Setto 0

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLAddAlarmltem(0, 1, “ALARM #1”, 8, 3, 1, 12, 0, 0);

Timex Corp. Confidential Proprietary Information H-

6.16.TUDLAddApptitem

int TUDLAddAlarmitem(BYTE bAppInstance, WORD wlitemID, LPCSTR pszText, int cchTextMax, DATE
dtStartDateTime, ApptStatus nStatus, Frequency nFreq, Reminder nReminder, DATE dtReserved1, DATE
dtReserved2);

Purpose:
Adds an Appointment item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
wltemID — the ID of the item you wish to add. Must be unique
pszText — The text of the appointment message
cchTextMax — The size of the appointment message in pszText
dtStartDateTime — The starting date of the appointment
nStatus — Please refer to the enum for information about this value
nFreq — Please refer to the enum for information about this value
nReminder - Please refer to the enum for information about this value
dtReserved1 — Setto 0
dtReserved2 — Setto 0

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLAddAppttem(0, 1, “DOCTOR’S APPT”, 13, diDate, 3, 0, 5, 0, 0);

6.17.TUDLAddNoteltem
int TUDLAddNoteltem(BYTE bApplinstance, WORD witemID, LPCSTR pszText, int cchTextMax, BYTE bStatus);

Purpose:
Adds an Note item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
wltemID — the ID of the item you wish to add. Must be unique
pszText — The text of the appointment message
cchTextMax — The size of the appointment message in pszText
bStatus — 0 = unused, 1 = used

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLAddNoteltem(0, 1, “Visa Card 1234-5678-1234-5678", 29, 1);

6.18. TUDLAddOptionltem

int TUDLAddOptionltem(BYTE bAppinstance, BOOL boolNightModeEnabled, BOOL boolNightModeAuto, BYTE
bNightModeOnMin, BYTE bNightModeOnHour, BYTE bNightModeOffMin, BYTE bNightModeOffHour, BYTE
bNightModeToggleDuration, BOOL boolChimeEnabled, BOOL boolChimeAuto, BYTE bChimeOnHour, BYTE

Timex Corp. Confidential Proprietary Information 12-

Timex Corp.

bChimeOffHour, BOOL boolButtonBeepEnabled, BYTE bLastSetCharacter, LPCSTR pszPassword, int
cchPasswordMax, BOOL boolApp1Timeline, BOOL boolApp2Timeline, DNORD dwReserved);

Purpose:
Adds an Option item to the packager for download to the device.

Parameters:
bApplInstance - instance of the application
boolNightModeEnabled — True if Night-Mode is enabled
boolNightModeAuto — True if Night-Mode is in auto mode
bNightModeOnMin — The minute when Night-Mode will come on when in auto mode
bNightModeOnHour — The hour when Night-Mode will come on when in auto mode
bNightModeOffMin — The minute when Night-Mode will go off when in auto mode
bNightModeOffHour — The hour when Night-Mode will go off when in auto mode
bNightModeToggleDuration — How long the user must press the Indiglo button before Night-Mode goes On or Off
boolChimeEnabled — True if the hourly chime is enabled
boolChimeAuto — True if the hourly chime is in auto mode
bChimeOnHour — The hour when the Hourly Chime will become active when in auto mode
bChimeOffHour — The hour when the Hourly Chime will turn off ehen in auto mode
boolButtonBeepEnabled — True if the button beep is enabled
bLastSetCharacter — Set to 69 for US, or 87 for European; last character found during crown editing of text
pszPassword — Up to a two character password used for protecting modes
cchPasswordMax — The length of the password text
boolApp1Timeline — Set to True to enable the first application time line
boolApp2Timeline — Set to True to enable the second application time line
dwReserved — Set to 0

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLAddOptiontem(0, FALSE, TRUE, 0, 20, 0, 8, 3, TRUE, FALSE, 8, 19, TRUE, 69, “YZ”, 2, TRUE, FALSE, 0);

6.19.TUDLAddOccasionltem

int TUDLAddOccasionltem(BYTE bAppinstance, WORD witemID, LPCSTR pszText, int cchTextMax, DATE
dtStartDateTime, BYTE bStatus, OccasionType nType, BOOL blgnoreYear, DATE dtReserved1);

Purpose:
Adds an Occasion item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
wltemID — the ID of the item you wish to add. Must be unique
pszText — The text of the appointment message
cchTextMax — The size of the appointment message in pszText
dtStartDateTime — The starting date for the occasion
bStatus — 0 = non-recurring, 1 = recurring
nType — Please refer to the OccasionType enum in Section 6.35 for information about this value
blgnoreYear — set to TRUE to not use the year on an occasion item. This is used when you don’t know the starting
date of an occasion
dtReserved1 — Setto 0

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
COleDateTime timeNow;

Confidential Proprietary Information

13-

Timex Corp.

timeNow = COleDateTime::GetCurrentTime();
DATE dtDate = DATE(timeNow);
TUDLAddOccasionltem(0, 1, “Mom’s Birthday”, 14, dtDate, 1, 1, FALSE, 0);

6.20. TUDLAddContactltem

int TUDLAddContacttem(BYTE bAppinstance, WORD witemID, LPCSTR pszNameText, int cchNameTextMax,
LPCSTR pszTypeText, int cchTypeTextMax, LPCSTR pszPhoneText, int cchPhoneTextMax, BYTE bOptions);

Purpose:
Adds a Contact item to the packager for download to the device

Parameters:
bApplInstance - instance of the application
wltemID — the ID of the item you wish to add. Must be unique
pszNameText — The name of the contact
cchNameTextMax — The size of the text in pszNameText
pszTypeText — The text for the phone type (e.g. “WF” for work fax)
cchTypeTextMax — The size of the text in pszTypeText
pszPhoneText — The actual phone number
cchPhoneTextMax — The size of the text in pszPhoneText
bOptions — bit 0 = don't apply phone number formatting
bit 1 = display left arrow in the first pos of the main dot matrix
bit 2 = display right arrow at the end of the phone number
bit 3 = display left arrow in the top dot matrix (in place of phone type)

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLAddContacttem(0, 1, “Ralph’s Pizza”, 13, “B”, 1, “800-555-3456", 12, 0);

6.21. TUDLAddScheduleltem

int TUDLAddScheduleltem(BYTE bAppinstance, WORD wGroupID, LPCSTR pszGroupText, int
cchGroupTextMax, LPCSTR pszGroupLabel, int cchGroupLabelMax, ScheduleType nType, WORD witemID,
LPCSTR pszText, int cchTextMax, DATE dtDateTime, int nDayOfWeek);

Purpose:
Adds an Occasion item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
wGrouplD — the ID of the group you wish to add. Must be unique and start with 0
pszGroupText — The group name text
cchGroupTextMax — The size of the group message in pszGroupText
pszGrouplLabel — The watch label display for the group
cchGroupLabelMax — The size of the group label text in pszGroupLabel
nType — Please refer to the enum for information about this value
wltemID — The ID of the item within the current group that you wish to add
pszText — The text for the current item
cchTextMax — The size of the text in pszText
dtDateTime — The time and date of the item
nDayOfWeek — The day of the week for the current item

Confidential Proprietary Information

14-

Timex Corp.

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
COleDateTime timeNow;
timeNow = COleDateTime::GetCurrentTime();
DATE dtDate = DATE(timeNow);
TUDLAddScheduleltem(0, 0, “NBA”, 3, “BULLS”, 5, 3, 0, “VS KNICKS”, 9, dtDate, 0);

6.22. TUDLAddSoundltem

int TUDLAddSounditem(BYTE bAppIinstance, SoundType nitemiD, int nSoundsMax, LPBYTE IpbSounds);

Purpose:
Adds a Sound item to the packager for download to the device

Parameters:
bApplnstance - instance of the application
nltemID — Please refer to the SoundType enum in Section 6.35 for information about this value
nSoundsMax — Number of bytes in the buffer pointed to by IpbSounds
IpbSounds — A buffer containing the sound data. Please refer to the section on Sounds for more information.

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
TUDLAddSoundltem(0, 0, “NBA”, 3, “BULLS”, 5, 3, 0, “VS KNICKS”, 9, dtDate, 0);

6.23.TUDLSetTimeLine
int TUDLSetTimeLine(BOOL bTimeeLine1, BOOL bTimeLine2);

Purpose:
Enables or disables the timeline feature.

Parameters:
bTimeLine1 — Set this to TRUE to enable the time line for the first instance of a mode that supports
the time line.
bTimeLine2 — Set this to TRUE to enable the time line for the second instance of a mode that supports
the time line.

Returns:
0 - Success
<0 - Error
>0 - Warning

Example:
TUDLSetTimeLine(TRUE, FALSE); /I Turn on the first time line and turn off the second time line

6.24. TUDLGetltem

int TUDLGetltem(Appindex nAppindex, BYTE bApplnstance, void* pltemStruct, GetltemType nitemType);

Confidential Proprietary Information

15-

Timex Corp.

Purpose:
Retrieves an item from the packager after upload from the device

Parameters:
nApplndex - type of the item being added to the database. Refer to Section 4.34 for the ApplIndex definition
bApplInstance - instance of the application
pltemStruct - application specific item structure
nltemType — Which item to retrieve — Refer to the GetltemType enum in Section 6.35.

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
CHRONO_ITEM cltem, cLastltem;
for (BYTE x = 0; x < 14; x++)

{
int nindex = 0;
/I Get each workout stored in the chrono database
int nRet = TUDLGetltem(CHRONO_APP, x, &cltem, GETITEM_FIRST);
while (nRet = TIMEX_ERR_NO_ITEM)
{
if (cltem.bType == 1) I/l workout
{
/I process workout
}
else if (cltem.bType == 2) // splits
/I process split
cLastltem = cltem;
nRet = TUDLGetltem(CHRONO_APP, x, &cltem, GETITEM_NEXT);
}
}

6.25. TUDLGetChronoltem

int TUDLGetChronoltem(BYTE bAppinstance, LPWORD witemID, LPWORD wWorkoutID, LPBYTE bType,
LPBYTE bNumLaps, DATE* dtDateTime, LPBYTE bLapNum, LPBYTE bHour, LPBYTE bMinute, LPBYTE
bSecond, LPBYTE bHundredth, BOOL *bModified, GetitemType nltemType);

Purpose:
Retrieves a Chrono item from the packager after upload from the device

Parameters:
bApplInstance - instance of the application
bltemID — the ID of the item you are retrieving
bWorkoutD — the ID of the workout you are retrieving
bType — 1 if a workout was retrieved, or 2 if a lap was retrieved
bNumLaps — If a workout, the number of laps for the workout
dtDateTime — The date of the workout
bLapNum — The current lap number if retreving a lap
bHour — The current hour for the current lap
bMinute — The current minute for the current lap
bSecond — The current second for the current lap
bHundredth — The current hundredth for the current lap
bModified — 1 if the entry was modified on the watch, 0 otherwise.

nltemType — Used to control which item you are retrieving. Please refer to the GetltemType enum in Section 6.35

for information about this value

Confidential Proprietary Information

16-

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
CHRONO_ITEM stltem;
BOOL bModified;
int nRet = TUDLGetChronoltem(0, &stltem.bltemID, &stltem.nWorkoutID, &stltem.bType, &stltem.bNumLaps,
&stltem.dtDateTime, &stltem.bLapNum, &stltem.bHour, &stltem.bMinute,
&stltem.bSecond, &stltem.bHundredth, &bModified, GETITEM_FIRST);
while (nRet = TIMEX_ERR_NO_ITEM)

if (cltem.bType == 1) /I workout
{
I/ process workout

}
else if (cltem.bType == 2) // splits
{

/I process split

cLastltem = cltem;

int nRet = TUDLGetChronoltem(0, &stltem.bltemID, &stltem.nWorkoutID, &stltem.bType, &stltem.bNumLaps,
&stltem.dtDateTime, &stltem.bLapNum, &stltem.bHour, &stltem.bMinute,
&stltem.bSecond, &stltem.bHundredth, &bModified, GETITEM_NEXT);

6.26. TUDLGetAlarmltem

int TUDLGetAlarmltem(int bApplnstance, int* witemID, char** pszText, int* nStatus, int* nFreq, int* bHour, int*
bMinute, DATE* dtReserved1, BOOL *bModified, int nitemType);

Purpose:
Retrieves an Alarm item from the packager after upload from the device

Parameters:

bApplInstance - instance of the application

wltemID — the ID of the alarm you are retrieving

pszText — The text of the alarm you are retrieving

nStatus — The status of the alarm you are retrieving. Please refer to the AlarmStatus enum for information about
this value.

nFreq — The frequency of the alarm you are retrieving. Please refer to the AlarmFrequency enum for information
about this value.

bHour — The hour of the alarm you are retrieving

bMinute — The minute of the alarm you are retrieving

dtReserved1 — Will be 0

bModified — 1 if the entry was modified on the watch, 0 otherwise.

nltemType — Used to control which item you are retrieving. Please refer to the GetltemType enum for
information about this value

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
int witem|D;
char* pszText[250];
int nStatus;

Timex Corp. Confidential Proprietary Information F7-

Timex Corp.

int nFreq;

int nHour;

int nMinute;

DATE dtreserved1;
BOOL bModified;

int nRet = TUDLGetAlarmltem(0, &wltemID, &pszText, &nStatus, &Freq, &nHour, &nMinute, &dtReserved1, 0);
/l process the data here
while (nRet = TIMEX_ERR_NO_ITEM)

nRet = TUDLGetAlarmltem(0, &wltemID, &pszText, &nStatus, &Freq, &nHour, &nMinute, &dtReserved1,
&bModified, 0);
/I process the data
}

6.27.TUDLGetApptitem

int TUDLGetApptlitem(int bAppinstance, int witemID, char** pszText, DATE* dtStartDateTime, int* nStatus,
int* nFreq, int* nReminder, DATE* dtReserved1, DATE* dtReserved2, BOOL *bModified, int nitemType);

Purpose:
Retrieves an Appointment item from the packager after upload from the device

Parameters:

bApplnstance - instance of the application

wltemID — the ID of the appointment you are retrieving

pszText — The text of the appointment you are retrieving

dtStartDateTime — The start date of the appointment

nStatus — The status of the appointment you are retrieving. Please refer to the ApptStatus enum in Section 6.35
for info about this value.

nFreq — The frequency of the appointment you are retrieving. Please refer to the Frequency enum in Section 6.35
for info about this value.

nReminder — The prenotification reminder time for the appointment you are retrieving. Please refer to the
Reminder enum in Section 6.35 for info about this value.

dtReserved1 — Will be 0

dtReserved2 — Will be 0

bModified — 1 if the entry was modified on the watch, 0 otherwise.

nltemType — Used to control which item you are retrieving. Please refer to the GetltemType enum in Section 6.35
for information about this value

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
int witem|D;
char* pszText[250];
DATE dtStartDateTime;
int nStatus;
int nFreq;
int nReminder;
DATE dtReserved1;
DATE dtReserved2;
BOOL bModified;
int nRet = TUDLGetApptltem(0, &wltemID, &pszText, &nStatus, &Freq, &nReminder, &dtReserved1,
&dtReserved2, &bModified, 0);
/l process the data here
while (nRet = TIMEX_ERR_NO_ITEM)

int nRet = TUDLGetApptltem(0, &wltemID, &pszText, &nStatus, &Freq, &nReminder, &dtReserved1,
&dtReserved2, &bModified, 0);

Confidential Proprietary Information 18-

/I process the data

6.28.TUDLGetNoteltem

int TUDLGetNoteltem(BYTE bAppinstance, LPWORD witemID, LPSTR* pszText, LPBYTE bStatus, BOOL
*bModified, GetltemType nitemType);

Purpose:
Retrieves a Note item from the packager after upload from the device

Parameters:
bApplnstance - instance of the application
wltemID — the ID of the note you are retrieving
pszText — The text of the note you are retrieving
bStatus — The status of the note you are retrieving; 0 = unused, 1 = used.
bModified — 1 if the entry was modified on the watch, 0 otherwise.
nltemType — Used to control which item you are retrieving. Please refer to the GetltemType enum in Section 6.35
for information about this value

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:

NOTE_ITEM stltem;

BOOL bModified;

int nRet = TUDLGetNoteltem(0, &stltem.wltemID, &stltem.pszText, &stltem.bStatus, &bModified,
GETITEM_FIRST);

6.29. TUDLRemoveltem

int TUDLRemoveltem(Appindex nAppindex, BYTE bAppinstance, WORD wltemiD);

Purpose:
Retrieves an item from the packager after upload from the device

Parameters:
nApplndex - type of the item being removed from the database. Refer to Section 6.35 for the Applndex definition
bApplInstance - instance of the application
wltemID — The identifier of the item (the same as the number when it was originall added)

Returns:
0 - Success
<0 - Error
> 0 - Warning
Example:

BYTE blnstance = 0;
TUDLRemoveltem(CONTACT_APP, binstance, 3); // remove the 3" item from the 1% contact instance

6.30. TUDLRemoveAllltems

int TUDLRemoveAllltems(Appindex nAppindex, BYTE bApplInstance);

Purpose:
Removes all items from all applications

Parameters:

Timex Corp. Confidential Proprietary Information 19-

nApplndex - type of the item being removed from the database. Refer to Section 6.35 for the AppIndex definition
bApplnstance - instance of the application

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
BYTE binstance = 0;
TUDLRemoveAllltems(ALARM_APP, binstance); /I remove all of the alarms

6.31.TUDLRemoveAllApps
int TUDLRemoveAllApps();

Purpose:
Removes all applications from the device

Parameters:
None

Returns:
0 - Success
<0 - Error
> 0 - Warning
Example:
TUDLRemoveAllApps();

6.32.TUDLRemovePeriodicTask
int TUDLRemovePeriodicTask;

Purpose:
Removes the Periodic Task from the device

Parameters:
None

Returns:
0 - Success
<0 - Error
> 0 - Warning
Example:
TUDLRemovePeriodicTask();

6.33.TUDLAddApp

int TUDLAddApp(ApplIndex nApplindex, int nAppinstance, BOOL boolPassword,
LPTSTR IpszModeName);

Purpose:
Adds an application to the device. Also specifies whether a password is required for the mode, as well as
specifying the mode name that is shown upon mode entry.
NOTE: When adding a chrono application to the device, you must specify the number of laps being download (or
add the workouts manually) to see the chrono mode in the device.

Parameters:

nApplndex - type of the item being added to the database. Refer to Section 6.35 for the Applndex definition
bApplInstance - instance of the application

Timex Corp. Confidential Proprietary Information

boolPassword - TRUE if the mode is password protected, FALSE otherwise

IpszModeName - pointer to a string containing the mode name. Any character to left of a newline
character will be on the first line and any characters to the right of the newline character
will be on the second line

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
CString sText;
sText = “CHRONO”;
/I Add the chrono as the first instance, setting password use to true, and supplying a mode banner as CHRONO
TUDLAddApp(CHRONO_APP, 0, TRUE, (LPTSTR)(LPCTSTR)sText);

6.34. TUDLAddAppExt

int TUDLAddAppExt(Appindex nApplndex, int nApplinstance,
BOOL boolPassword, LPTSTR IpszModeName,
LPBYTE IpbParam, BYTE bParamLen,
LPBYTE IpbCode, WORD wCodelLen,
LPBYTE IpbDatabase, WORD wDatabaselLen);

Purpose:
Adds a WristApp to the device. Also specifies whether a password is required for the mode, as well as
specifying the mode name that is shown upon mode entry

Parameters:
nApplndex - type of the item being added to the database. Refer to Section 6.35 for the Applndex definition
bApplInstance - instance of the application
boolPassword - TRUE if the mode is password protected, FALSE otherwise
IpszModeName - pointer to a string containing the mode name. Any character to left of a newline
character will be on the first line and any characters to the right of the newline character
will be on the second line
IpbParam — pointer to an array of bytes containing the parameter file data
bParamLen — length of the parameter data pointed to IpbParam
IpbCode — pointer to an array of bytes containing the WristApp code
bCodeLen — length of the WristApp code pointed to IpbParam
IpbDatabase — pointer to an array of bytes containing the database if it exists
bParamLen — length of the database pointed to IpbParam. If the WristApp doesn’t have a database, this is 0

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
int nRet = TUDLAddAppExt(WRISTAPP_APP, pMain->m_nInstance, bUsePassword,
(LPSTR)(LPCTSTR)sText, IpbParam, (BYTE)bParamSize,
IpbCode, (WORD)wCodeSize, IpbDB, (WORD)wDBSize);

6.35.TUDLAddPeriodicTask
int TUDLAddAppExt(WORD wCodeSize, LPBYTE IpbCode);
Purpose:
Adds a Periodic Task to the device. The Periodic Task code is designed to run either every second, every minute,

every hour, or every day. Only one Periodic Task may be present in the device at any given time.

Parameters:
wCodeSize — length of the Periodic Task code pointed to IpbCode

Timex Corp. Confidential Proprietary Information 21-

Timex Corp.

IpbCode — pointer to an array of bytes containing the code

Returns:
0 - Success
<0 - Error
> 0 - Warning

Example:
WORD wCodeSize;
BYTE *IpbCode;
IpbCode = new BYTE[1024];
wCodeSize = LoadPeriodicTask(&lpbCode);
int nRet = TUDLAddPeriodicTask(wCodeSize, IpbCode);

6.36.TUDLBeep
int TUDLBeep(WORD wFrequency, WORD wDuration);

Purpose:
To produce a sound (beep) through the PC speaker of a given frequency and duration

Parameters:
wFrequency - The frequency of the sound in Hz from 37 to 32767
wDuration - The duration of the sound in msec from 75 up

Returns:
TRUE (always)
Example:
TUDLBeep(2048, 500); // sound a 2 KHz tone for %2 a second
TUDLBeep(4096, 500); // sound a 4 KHz tone for %2 a second

6.37.Structure Definitions

Certain structures are used to collect information into a single variable for passing to the API functions.
These structs are defined on the following pages.

TOD_ITEM
BYTE bltemID
Zero-based time zone index, O=primary time, must be unique for each time zone
LPTSTR pszText
Pointer to a null-terminated string containing city code abbreviation
int cchTextMax
Number of characters in the buffer pointed to by pszText. Must be <= 3
LONG ITimeOffset
Time offset to the current system time (UTC) in seconds
TimeZonelndex nTZIndex
Index of the time zone
DateFormat nDateFormat
Date format according to the date format enumeration. Must be between 0 and 2
TimeFormat nTimeFormat
Time format according to the time format enumeration. Must be between 0 and 1
BOOL boolDSTObserved
TRUE if the time zone observes daylight saving time
BOOL boollsInDST
TRUE if the the time zone is currently in daylight saving time
BOOL boolShowWeekNumber
show week number in place of day of week
BYTE b1stDayOfWeek

Confidential Proprietary Information 22-

Timex Corp.

0=Sun, 1=Mon
DWORD dwReserved
Reserved for future use

CHRONO_ITEM

WORD wltemID

Must be a unique index of the item to which this structure refers
WORD wWorkoutID

Must be a unique index of the workout to which this structure refers
BYTE bType

O=unused, 1=workout, 2=lap
Workout data
BYTE bNumLaps

Number of laps in the workout
DATE dtDateTime

The date and time of the workout
Lap data
BYTE bLapNum

Lap number
BYTE bHour

Lap hour
BYTE bMinute

Lap minute
BYTE bSecond

Lap second
BYTE bHundredth

Lap hundredth of a second

TIMER_ITEM
WORD wltemID
Must be a unique index of the item to which this structure refers
LPTSTR pszText
Pointer to a null-terminated string that contains the item text, 9 chars max
int cchTextMax
Number of characters in the buffer pointed to by pszText
BYTE bHour
Timer hour 0-23
BYTE bMinute
Timer minute 0-59
BYTE bSecond
Timer second 0-59
TimerAction nAction
Action at end of timer. Refer to the TimerAction enum in section 4.34
BYTE bNumOfReps
Number of repetitions
BYTE bOptions
Timer options: O=half-way reminder not set, 1=reminder set

SCHEDULE_ITEM

WORD wGrouplD

Must be a unique index of the group to which this structure refers
LPTSTR pszGroupText

Ppointer to a null-terminated string that contains the group text
int cchGroupTextMax

Number of characters in the buffer pointed to by pszGroupText
LPTSTR pszGroupLabel

Confidential Proprietary Information

Pointer to a null-terminated string that contains the group label
int cchGroupLabelMax

Number of characters in the buffer pointed to by pszGroupLabel
ScheduleType nType

Schedule type according to the enum. Refer to section 4.34
WORD wltemID

Must be a unique index of the item to which this structure refers
LPTSTR pszText

Pointer to a null-terminated string that contains the item text
int cchTextMax

Number of characters in the buffer pointed to by pszText
DATE dtDateTime

The date and time of the schedule item
int nDayOfWeek

Day of the week for schedule type DOW_TIME; 0=sun, 1=mon,... 6=sat

ALARM_ITEM
WORD wltemID
Must be a unique index of the item to which this structure refers
LPTSTR pszText
Pointer to a null-terminated string that contains the item text
int cchTextMax
Number of characters in the buffer pointed to by pszText
AlarmStatus nStatus
Alarm status: 0=unused, 1=used/disarmed, 3=used/armed. Refer to the enum in section 4.34
AlarmFrequency nFreq
Frequency (or occurence) of the alarm. Refer to the enum in section 4.34
BYTE bHour
Alarm hour
BYTE bMinute
Alarm minute
DATE dtReserved1
Not used

APPT_ITEM
WORD wltemID
Must be a unique index of the item to which this structure refers
LPTSTR pszText
Pointer to a null-terminated string that contains the item text
int cchTextMax
Number of characters in the buffer pointed to by pszText
DATE dtStartDateTime
The date and time of the first occurrence of the appt
ApptStatus nStatus
Appointment status: O=unused, 1=disarmed, 3=armed. Refer to the enum in section 4.34
Frequency nFreq
Frequency (or occurence) of the appt. Refer to the enum in section 4.34
Reminder nReminder
Reminder offset (used to calculate prenotification time). Refer to the enum in section 4.34
DATE dtReserved1
Not used
DATE dtReserved?2
Not used

OCC_ITEM
WORD wltemID

Timex Corp. Confidential Proprietary Information

Timex Corp.

Must be a unique index of the item to which this structure refers
LPTSTR pszText

Pointer to a null-terminated string that contains the item text
int cchTextMax

Number of characters in the buffer pointed to by pszText
DATE dtStartDateTime

The date and time of the original occurrence of the occasion
BYTE bStatus

occasion status: 0=non-recurring, 1=recurring
OccasionType nType

Type of the occasion. Refer to the enum in section 4.34
DATE dtReserved1

Not used

PHONE_ITEM
WORD wltemID
Must be a unique index of the item to which this structure refers
LPTSTR pszNameText
Pointer to a null-terminated string that contains the item text
int cchNameTextMax
Number of characters in the buffer pointed to by pszText
LPTSTR pszTypeText
Pointer to a null-terminated string that contains the item text, 2 chars max
int cchTypeTextMax
Number of characters in the buffer pointed to by pszText
LPTSTR pszPhoneText
Pointer to a null-terminated string that contains the item text
int cchPhoneTextMax
Number of characters in the buffer pointed to by pszText
BYTE bOptions
bit 0 = don't apply phone number formatting
bit 1 = display left arrow in the first pos of the main dot matrix
bit 2 = display right arrow at the end of the phone number
bit 3 = display left arrow in the top dot matrix (in place of phone type)

NOTE_ITEM
WORD wltemID
Must be a unique index of the item to which this structure refers
LPTSTR pszText
Pointer to a null-terminated string that contains the item text
int cchTextMax
Number of characters in the buffer pointed to by pszText
BYTE bStatus
Note status: O=unused, 1=used

OPTION_ITEM
BOOL boolNightModeEnabled
TRUE if nightmode enabled
BOOL boolNightModeAuto
TRUE if nightmode auto on/off enabled
BYTE bNightModeOnMin
The time (in minutes) night mode will be turned on on the device
BYTE bNightModeOnHour
The time (in hours) night mode will be turned on on the device
BYTE bNightModeOffMin
The time (in minutes) night mode will be turned off on the device

Confidential Proprietary Information

25-

Timex Corp.

BYTE bNightModeOffHour

The time (in hours) night mode will be turned off on the device
BYTE bNightModeToggleDuration

For how long the user needs to press the indiglo button to turn on the nightmode; min=4, max=30
BOOL boolChimeEnabled

TRUE if hourly chime enabled
BOOL boolChimeAuto

TRUE if hourly chime auto on/off enabled
BYTE bChimeOnHour

The time (in hours) chime will be turned on on the device
BYTE bChimeOffHour

The time (in hours) chime will be turned off on the device
BOOL boolButtonBeepEnabled

TRUE if button beep enabled
BYTE bLastSetCharacter

Index to the last editable character during setting. Typically 68(~) for US and 86 (overscore)

for international
LPTSTR pszPassword

Pointer to a null-terminated string that contains the password
int cchPasswordMax

Number of characters in the buffer pointed to by pszPassword
DWORD dwReserved

Not used

SOUND_ITEM
SoundType nltemID
Must be a unique index of the item to which this structure refers
int nSoundsMax
Number of bytes in the buffer pointed to by IpbSounds
LPBYTE IpbSounds
Pointer to an array of sounds - up to 16 bytes long

6.38.Enum Definitions

The Appindex enum defines the application types that are used when performing certain API calls. For
example, when calling TUDLAddItem, if you wanted to add an Appointment item, the APPT_APP parameter
would be specified in the TUDLAddItem call. All of the Applndex values are shown below:

Appindex Value
TOD_APP 0
COMM_APP 1
CHRONO_APP 2
TIMER_APP 3
INTTIMER_APP 4
ALARM_APP 5
APPT_APP 6
NOTE_APP 7
OPTION_APP 8
OCCASION_APP 9
CONTACT_APP 10
SCHEDULE_APP 11
SYNCHRO_APP 12
COUNTER_APP 13
SOUND_APP 16
WRISTAPP_APP 17

Confidential Proprietary Information 26-

The DateFormat enum defines the values that can set in the TOD_ITEM structure for the format of the date.

DateFormat Value | Example

DMY 0 dd.mm.yy
YMD 1 yy-mm-dd
MDY 2 mm-dd-yy

The TimeFormat enum defines the values that can set in the TOD_ITEM structure for the format of the time.

TimeFormat Value | Example
HOUR12 0 am/pm time
HOUR24 1 24 hour time

The ChronoFormat enum defines the chrono format that can be set using TUDLSetOption.

ChronoFormat Value | Example
CHRONOFORMAT LAP_SPLIT |0 Lap on top line
Split on bottom
line
CHRONOFORMAT _SPLIT LAP |1 Split on top line
Lap on bottom line
CHRONOFORMAT _TIME_SPLI | 2 Time of day on top
T line
Split on bottom
line
CHRONOFORMAT_TIME_LAP 3 Time of day on top
line
Lap on bottom line

The TimerFormat enum defines the values that can be set in the TIMER _ITEM structure for the function at
the end of the timer.

TimerFormat Value | Example

TIMERACTION_STOP 0 Stop at the end of
the timer

TIMERACTION_REPEAT | 1 Repeat at the end
of the timer

TIMERACTION_CHRON 2 Start the chrono at

(0] the end of the
timer

The ScheduleType enum defines the values that can be set in the SCHEDULE_ITEM structure for the type

of schedule.

ScheduleType Value | Example

SCHEDULE_DATE 1 Set the schedule
format to date only

SCHEDULE_DOW_TIM | 2 Set the schedule

E type to day of
week and time
only

SCHEDULE_DATETIME | 3 Set the schedule
type to date and
time

Timex Corp. Confidential Proprietary Information 27-

Timex Corp.

The AlarmStatus enum defines the values that can be set in the ALARM_ITEM structure to arm or disarm

the alarm, as well as making the alarm unused.

AlarmStatus Value | Example

ALM_UNUSED 0

Set an alarm to unused

ALM_DISARME 1

Set an alarm to disarmed

BLM_ARMED 2

Set an alarm to armed

The AlarmFrequency enum defines the values that can be set in the ALARM_ITEM structure for the format

of the time.

AlarmFrequency Value | Example

ALMFREQ DAILY 1 Set an alarm to go off every day

ALMFREQ_WEEKDAY 2 Set an alarm to go off on
weekdays only

ALMFREQ_WEEKEND 3 Set an alarm to go off on
weekends only

ALMFREQ_WEEKLY_SU 4 Set an alarm to go off on Sundays
only

ALMFREQ_WEEKLY_MO 5 Set an alarm to go off on Mondays
only

ALMFREQ_WEEKLY_TU 6 Set an alarm to go off on
Tuesdays only

ALMFREQ_WEEKLY_WE 7 Set an alarm to go off on
Wednesdays only

ALMFREQ_WEEKLY_TH 8 Set an alarm to go off on
Thursdays only

ALMFREQ_WEEKLY_FR 9 Set an alarm to go off on Fridays
only

ALMFREQ_WEEKLY_SA 10 Set an alarm to go off on

Saturdays only

The ApptStatus enum defines the values that can be set in the APPT_ITEM structure to arm or disarm the

appointment, as well as making the appointment unused.

ApptStatus Value | Example

APPT_UNUSED 0

Set an appointment to unused

APPT_DISARME 1

Set an appointment to disarmed

BPPT_ARMED 2

Set an appointment to armed

The Frequency enum defines the values that can be set in the APPT_ITEM structure for which days an

appointment alert will be generated.

Frequency Value | Example

APPTFREQ 1DAY 0 Set an appointment to go off once

APPTFREQ_DAILY 1 Set an appointment to go off every
day

APPTFREQ_WEEKDAY 2 Set an appointment to go off on
weekdays only

APPTFREQ_WEEKEND 3 Set an appointment to go off on
weekends only

APPTFREQ_WEEKLY 11 Set an appointment to go off every
day for the selected week

APPTFREQ MONTHLY 12 Set an appointment to go off every

Confidential Proprietary Information

28-

Timex Corp.

day for the selected month

APPTFREQ_YEARLY

13

Set an appointment to go off the
same day every year

The Reminder enum defines the values that can be set in the APPT_ITEM structure to set the prenotification

time for an appointment.

Reminder Value | Example
REMINDER_OMINS 0 Set the prenotification time to 0
minutes before the appointment
REMINDER_5MINS 1 Set the prenaotification time to 5
minutes before the appointment
REMINDER_10MINS 2 Set the prenatification time to 10
minutes before the appointment
REMINDER_15MINS 3 Set the prenatification time to 15
minutes before the appointment
REMINDER_30MINS 4 Set the prenatification time to 30
minutes before the appointment
REMINDER_60MINS 5 Set the prenatification time to 1
hour before the appointment
REMINDER_2HRS 6 Set the prenaotification time to 2
hours efore the appointment
REMINDER_3HRS 7 Set the prenotification time to 3
hours efore the appointment
REMINDER_4HRS 8 Set the prenotification time to 4
hours before the appointment
REMINDER_5HRS 9 Set the prenaotification time to 5
hours before the appointment
REMINDER_6HRS 10 Set the prenotification time to 6
hours before the appointment
REMINDER_8HRS 11 Set the prenotification time to 8
hours before the appointment
REMINDER_10HRS 12 Set the prenatification time to 10
hours before the appointment
REMINDER_12HRS 13 Set the prenaotification time to 12
hours before the appointment
REMINDER _24HRS 14 Set the prenatification time to 24
hours before the appointment
REMINDER_48HRS 15 Set the prenatification time to 48

hours before the appointment

The OccasionType enum defines the values that can be set in the OCCASION_ITEM structure to set the

type of occasion such as a birthday or anniversary.

OccasionType Value | Example
OCCASION_NONE 0 Set the occasion to have no
special type
OCCASION_BDAY 1 Set the occasion to have the
birthday type
OCCASION_ANNIV 2 Set the occasion to have the
anniversary type
OCCASION_HOLIDAY 3 Set the occasion to have the
holiday type
OCCASION_VACATION 4 Set the occasion to have the

vacation type

Confidential Proprietary Information

29-

Timex Corp.

The SoundType enum defines the indexes into the sound structure to be used when setting values in the

SOUND_ITEM structure for creating sounds for the different events.

SoundType Value | Example

SOUND BUTTON_BEEP 0 Button beep

SOUND HOURLY CHIME 1 Hourly chime

SOUND ALARM 2 Alarm

SOUND APPOINTMENT 3 Appointment

SOUND _TIMER 4 Timer

SOUND _INT_TIMER 5 Interval Timer

SOUND HALF TIMER 6 Halfway Alert
SOUND_COMM_ERROR 7 Communications Error
SOUND_CUSTOM 8 Custom

The GetltemType enum defines the values that can be used when getting modified data for a certain mode.

GetltemType Value | Example

GETITEM_FIRST 0 Get the first item in the database

GETITEM_NEXT 1 Call this to get each subsequent
item in the database

7. VISUAL BASIC NOTES

Visual Basic does not support structures with variable length strings. In light of this, there are special
Addltem and Getltem functions added for Visual Basic. Instead of TUDLAddItem or TUDLGetltem, the
individual functions (such as TUDLGetChronoltem or TUDAddAIarmltem) should be used instead.

Please refer to TUCP.BAS for the Visual Basic definitions of the API functions

8. RETURN CODES

Most API functions return a value. These values can be warnings or errors. Errors are all fatal.

Communication can not continue when one of these errors occur. In most cases, when a warning is
received, communication can still continue, however, typically something is wrong with the data such as too
many records have been added, so some records won’t be added.

If an API function returns a value, then the value will be one of the ones specified below:

NAME VALUE |DESCRIPTION

TIMEX SUCCESS 0 No error

TIMEX ERR TOO MUCH DATA 3 Attempt to add too much data

TIMEX_ERR_NO_MEM 4 Attempt to allocate memory failed. Close
other apps and try again.

TIMEX ERR FILE ERR 7 Error creating temporary file

TIMEX_ERR_INV_PACKET_LEN 8 Invalid packet length when creating USB
packet

TIMEX ERR _INV_PARM 9 API parameter was invalid

TIMEX _ERR_DEV_NOT_FOUND 10 Device was not found (make sure it is
plugged in)

TIMEX ERR _COMM 11 Generic communication error occurred

TIMEX ERR COMM_ CHECKSUM 12 Invalid checksum returned from watch

TIMEX ERR COMM PACKET LEN 13 Invalid packet length returned from watch

Confidential Proprietary Information

30-

Timex Corp.

TIMEX_ERR_COMM _DEV_INFO

14

Could not retrieve device information block

TIMEX_ERR_COMM_DEV_MISMATCH

15

Incompatible device attached

TIMEX_ERR_COMM_TIMEOUT

16

Timed out after attemping to send packet
multiple times

TIMEX_ERR_NO_ITEM

18

No entries are present for the selected
application and/or item type

TIMEX_ERR_DEV_API_MISMATCH

27

Unsupported operation for the selected
device (API does not exist)

This error occurs when the selected
devices do not support programs,
melodies, system data or international date
formats but an attempt is made to set this
info; determining device support is as
follows: Support for downloadable
programs is determined by using the
TUDLGetOption API with the
DL_DEV_SUP_PROGRAM identifier.
Support for downloadable melodies is
determined by using the TUDLGetOption
API with the DL_DEV_SUP_MELODY
identifier. Support for system data is
determined by using the TUDLGetOption
API with the

DL _DEV_SUP_SYSTEM_DATA identifier.
Support for international date formats is
determined by using the TUDLGetOption
API with the

DL _DEV_SUP_INTL _DATE_FORMATS
identifier.

TIMEX_ERR_PROG_EXISTS

30

A program with the same name and
instance was attempted to be added

TIMEX_ERR_ITEM_EXISTS

32

An item with the same name and ID was
attempted to be added

TIMEX_ERR_BAD_CHAR_IN_PROG

33

A character was found that wasn’t 0-9, A-F,
or a-f

TIMEX_ERR_INVALID_DEVICE

34

Device types tested to be invalid

TIMEX_ERR_PROGRAM_TOO_LARGE

46

An attempt was made to add a program
larger than the reciever’'s downloadable
program region

TIMEX_ERR_MELODY_TOO_LARGE

47

An attempt was made to add a melody
larger than the reciever’'s downloadable
melody region

TIMEX_ERR_TOO_MUCH_BINARY_DATA

48

An attempt was made to add binary data
larger than the reciever’'s downloadable
binary data region

TIMEX_ERR_COMM_LOST_SUSPEND_MOD
E

The PC went into suspend mode, so
communication was terminated.

TIMEX_WRN_OVER_MAXDATA

Added more data than the max data
parameter allows

TIMEX_WRN_TEXT_TRUNCATED

-2

Text string was truncated

TIMEX_WRN_CHAR_LOST

-3

Untranslateable character

TIMEX_WRN_NO_DATA

-5

No data to transmit

TIMEX_WRN_DEFAULT_DEV_SET

-6

Error while processing INI file so the device
type was set to the default

TIMEX_WRN_USER_ABORT

User aborted send

Confidential Proprietary Information

31-

TIMEX_WRN_TOO_MANY_RECORDS -9 Number of records added has exceeded
the amount supported by the device
TIMEX_WRN_NUMBER_ADJUSTED -10 Number has been adjusted to the closest

amount supported by the device

Timex Corp. Confidential Proprietary Information

32-

Timex Corp.

9. OPTION VALUES

The option values can be set using the TUDLSetOption API call and retrieved by using the TUDLGetOption

API call.

NAME

VALU
E

DESCRIPTION

DL_OPT_DEV_APPT_LEN

1

Returns max allowable length of appointment
messages for the selected device. This is
typically 100 characters.

DL_OPT_DEV_NOTE_LEN

Returns max allowable length of note item
messages for the selected receiver / device.

DL_OPT_DEV_PHONE_LEN

Returns max allowable length of phone
messages (name) for the selected receiver /
device.

DL_OPT_DEV_PHONE_NUM_LEN

Returns max allowable length of phone book
numbers for the selected receiver / device.
This is typically 12 characters.

DL_OPT_DEV_OCC_LEN

Returns max allowable length of occasion
messages for the selected receiver / device.

DL_OPT_DEV_ALARM_LEN

Returns max allowable length of alarm
messages for the selected receiver / device.

DL_OPT_DEV_CITY_LEN

Returns max allowable length of city code
messages for the selected receiver / device.
This is typically 3 characters. "PST" is an
example of an alarm message.

DL_OPT_DEV_MAX_PACKET_LEN

Returns max allowable packet length for the
selected receiver / device. This ID is for
internal use only, and should not be used by
application developers.

DL_OPT_DEV_TOD_MAX

Returns max number of Time Of Day zones
supported by the selected device

DL_OPT_SYS_DEVICE

10

Returns the currently-selected device type.
For example, DL_DEV_851. Use the
SetDeviceType() API to set a new device

type.

DL_OPT_DEV_MAX_DATABASE

12

Returns the max size of database information
for the selected receiver / device.

The database consists of all application
entries. The database is a single block in
most devices; this means that these info
types are combined into a single structure,
which is downloaded as a unit. It is therefore
impossible to update a device's phonebook
yet leave the appointments unaffected.

A PIM / front-end app can typically accept
more information than can be stored in a
device. This ID is therefore used to control the
amount of database data to be downloaded.
This is accomplished by adding all the
database, request the max allowable
database size using this ID, then request the

Confidential Proprietary Information

33-

Timex Corp.

current total database size using the
DL_OPT_DEV_TOTAL_DATA identifier
(described next). A warning should be
displayed once the total exceeds the max,
and actual download must be inhibited until
the total is less than or equal to the max
allowable.

DL_OPT_DEV_TOTAL_DATA

13

Returns the current size of the database
information structure for the selected receiver
/ device.

This value may exceed the maximum
allowable database size for the selected
device. ltis therefore required that this value
be compared to the value returned using the
DL_OPT_DEV_MAX_DATABASE identified
(described above). The actual download must
be inhibited until the current database
structure size is less or equal to the max
allowable.

DL_OPT_DEV_TOTAL_USER_MEMORY

Returns a value specifying percentage of the
memory used by currently selected data for
the current device.

This parameter can be used in place of the
previous two to show the percentage of
memory used.

DL_OPT_DEV_MAX_APPS

15

Returns a value specifying the maximum
number of applications (modes). Time of day
mode and communication mode are excluded
from this value.

DL_OPT_DEV_MAX_PROGRAM

27

Returns the max size of downloadable
program area for the selected receiver /
device.

Downloadable programs are small programs
which can be downloaded to the device using
Timex Data Link.

The value returned is the memory size
allocated by the device to store the
downloadable program (in bytes).

Use the DL_DEV_SUP_PROGRAM identifier
with TUDLGetOption to determine if the
selected device supports downloadable
programs.

DL_OPT_DEV_MAX_MELODY

28

Returns the max size of downloadable
melody area for the selected receiver /
device.

Downloadable melodies are small sound-
scapes which can be downloaded to the
device using Timex Data Link.

Confidential Proprietary Information

34-

Timex Corp.

The value returned is the memory size
allocated by the device to store the
downloadable melody (in bytes).

Use the DL_DEV_SUP_MELODY identifier
with TUDLGetOption to determine if the
selected device supports downloadable
melody info.

DL_OPT_DEV_TIMER_MAX

29

Returns max number of timer entries
supported by the selected receiver

DL_OPT_DEV_INTTIMER_MAX

30

Returns max number of interval timer entries
supported by the selected receiver

DL_OPT_DEV_SCHEDULE_MAX

31

Returns max number of schedule entries
supported by the selected receiver

DL_OPT_DEV_SCHEDULE_GROUP_MAX

32

Returns max number of schedule group
entries supported by the selected receiver

DL_OPT_DEV_SCHEDULE_GROUP_NAME_
LEN

33

Returns max length of the group name. This
is a label for the schedule mode set position
such as "LOCATION" or "TEAM"

DL_OPT_DEV_SCHEDULE_NUM

34

Returns current number of schedule entries.
The dwExtra parameter should contain the
application’s instance number

DL_OPT_DEV_INTTIMER_NUM

35

Returns current number of interval timers.
The dwExtra parameter should contain the
application’s instance number

DL_OPT_DEV_TIMER_NUM

36

Returns current number of timers. The
dwExtra parameter should contain the application’s
instance number

DL_OPT_DEV_ALARM_NUM

37

Returns current number of alarms. The
dwExtra parameter should contain the application’s
instance number

DL_OPT_SYS_ERR_CODE

38

Returns the specific error code for the most
recent API call.

With few exceptions, all API functions return a
value of 0 for success, a value less than 0 for
an error and a value greater than 0 for a
warning. Most often, it is sufficient to simply
test the return value and if an error then
cancel current operation and shut-down, and
if a warning then just continue on knowing
that a non-critical error occurred.

DL_OPT_DEV_SUP_PROGRAM

45

Returns a boolean value indicating the
support for downloadable programs for the
selected receiver / device.

Downloadable programs are small programs
which can be downloaded to the device using
Timex Data Link.

Because front-end support of downloadable
programs is under development, please
contact Timex to obtain more technical detail
than can be included here.

DL_OPT_DEV_SUP_MELODY

46

Returns a boolean value indicating the
support for downloadable melody information

Confidential Proprietary Information

35-

Timex Corp.

for the selected receiver / device.

Downloadable melodies are small sound-
scapes which can be downloaded to the
device using Timex Data Link.

Because front-end support of downloadable
melodies is under development, please
contact Timex to obtain more technical detail
than can be included here.

DL_OPT_DEV_SUP_SYSTEM_DATA

47

Returns a boolean value indicating the
support for downloadable system information
for the selected receiver / device.

System information consists of settings such
as hourly chime control and keypress beeps
on the device.

DL_OPT_DEV_SUP_INTL_DATE_FORMAT

Returns a boolean value indicating the
support for international date formats for the
selected receiver / device.

International date formats allow the device to
display date information in MMDDYY,
YYMMDD and DDMMYY ordering, using "."
or "-" characters as seperators.

DL_OPT_SYS_NUM_DEVICES

49

Returns the number of device types the
system is aware of.

DL_OPT_DEV_APPT _NUM

50

Returns current number of appointments

DL_OPT _DEV_NOTE_NUM

51

Returns current number of note entries

DL_OPT DEV_PHONE_NUM

52

Returns current number of phone numbers

DL_OPT DEV_OCC_NUM

53

Returns current number of anniversaries

DL_OPT_DEV_ALARM_MAX

54

Returns max number of alarms supported by
the device

DL_OPT_DEV_APPT_MAX

55

Returns max number of appointments
supported by the selected receiver / device.

DL_OPT_DEV_NOTE_MAX

56

Returns max number of note entries
supported by the selected receiver / device.

DL_OPT_DEV_PHONE_MAX

57

Returns max number of phone numbers
supported by the selected receiver / device.

DL_OPT_DEV_OCC_MAX

58

Returns max number of occasions supported
by the selected receiver / device.

DL_OPT_DEV_TIMER_LEN

60

Returns max allowable length of timer
messages for the selected receiver / device.
This is typically 8 characters. Boil Egg" is an
example of an timer message.

DL_OPT_DEV_CHRONO_NAME _LEN

61

Returns max allowable length of chrono name

DL_OPT_DEV_CHRONO_NUM

62

Returns or sets current number of chrono
laps.

DL_OPT_DEV_CHRONO_MAX

63

Returns max allowable number of chrono
laps.

DL_OPT_DEV_SUP_CHRONO

64

Returns a boolean value indicating the
support for configurable/controllable
chronographs for the selected receiver /
device.

Confidential Proprietary Information

36-

Timex Corp.

Controllable chronos allow a user to configure
the chrono embedded in the receiver.

Options such as number of laps of storage
are set.

DL_OPT_DEV_SUP_TIMER

65

Returns a boolean value indicating the
support for configurable/controllable timers for
the selected receiver / device.

Controllable timers allow a user to configure
the timer embedded in the receiver. Options
such as timeout duration are set.

DL_OPT_DEV_SUP_BINARY_DATA

66

Returns a boolean value indicating the
support for downloadable binary data to the
selected receiver / device.

Downloadable binary data is device-specific
information formatted according to a Timex
download specification and a receiver-specific
data format specification.

DL_OPT_DEV_MAX_BINARY_DATA

67

Returns the max size of binary data area for
the selected receiver / device.

Downloadable binary data is device-specific
information formatted according to a Timex
download specification and a receiver-specific
data format specification.

The value returned is the memory size
allocated by the device to store the binary
data (in bytes).

Use the DL_DEV_SUP_BINARY_DATA
identifier with TUDLGetOption to determine if
the selected device supports binary data
downloads.

DL_OPT_DEV_SUP_DATABASE

68

Returns a boolean value indicating the
support for any or all the database types
(appointments, anniversaries, phone books
and to-do lists) for the selected receiver /
device.

Databases allow storage of the 4 information
types outlined above. Most devices will

support all the database types, but some will
only support a subset of the database types.

DL_OPT _DEV_CHRONO_MIN

71

Returns min allowable number of chrono laps.

DL_OPT_DEV_CHRONO_FORMAT

72

Sets or returns chrono display format which
can be one of the ChronoFormat enum types

DL_OPT_DEV_SUP_NIGHTMODE_OPT

73

Returns a boolean value indicating the
support for setting Night-Mode options.

10. CREATING SOUNDS

Confidential Proprietary Information

37-

Using the API calls, one can create the sound database by setting up a melody table for each sound event.
A melody table consists of one or more melody patterns. A melody pattern contains a repetition count,
frequency and duration codes, and a control code. The control code is used to indicate the end of a melody
pattern. For a melody pattern that is repeated more than once, the control code signals the audio driver to
repeat the melody pattern. When the repetition count of the melody pattern is complete, the control code
indicates whether it is the end of the melody table or that another melody pattern exists. The maximum size
for each pattern is 255 bytes.

MELODY TABLE STRUCTURE
PATTERM A PATTERM B oo PATTERM n

PATTERN STRUCTURE

REF FREDQ & FREQ & CONTROL
COUNT DURATION DURATION CODE
REP COUNT Indicates number of repetitions for current pattern. Maximum
value is 255.

FREQ & DURATION A byte value indicating the frequency and duration. The
frequency data is stored in the upper nibble. The duration data
is stored in the lower nibble.

The available frequency codes are:

(0 Hz)

(1170 Hz)
(1365 Hz)
(1638 Hz)
(2048 Hz)
(2340 Hz)
(2731 Hz)
(3277 Hz)
(4096 Hz)

o~NOGOhAhWN-=_0O

The Duration is a value from 0 to 15. The actual time duration
is computed using the formula:

(Duration + 1)
32

Maximum Time: 0.5 seconds
Minimum Time: 21.35 milliseconds

CONTROL CODE Indicates an end of a current melody pattern. Depending on
the control code being used, it signifies that another melody
pattern exists or this is the last pattern.

The available control codes are:

OxFE Continue pattern
O0xFF End pattern

Timex Corp. Confidential Proprietary Information 38-

Timex Corp.

Confidential Proprietary Information

39-

A sample melody pattern used to generate the Timex Step Tone (alarm tone). This is just one event, and

more buffers can be created for the other events. There is a 32 byte length limit per event. The length of the

buffer below is 11 bytes.

Buffer Index Contents Description

0 10 Number of Repititions

1 0x43 Frequency and Duration
2 0x03 Frequency and Duration
3 0x43 Frequency and Duration
4 O0xOF Frequency and Duration
5 0x03 Frequency and Duration
6 OxFE Continue Pattern

7 40 Number of Repititions

8 0x43 Frequency and Duration
9 0x03 Frequency and Duration
10 OxFF End Melody Pattern

Timex Corp.

Sounds have already been defined with the Timex PIM using the file format specified below. You may opt to

use this file yourself, and convert the entries to the above sound array.

: EASY.SF

; The sound file is defined with sections that represent events.

; Each Event is enclosed within brackets []. The exception is the description
; field which contains one entry called name that is the text to display in the

; sound selected dialog

; The event contains a repeat count that determines how many

; times the sequence of sounds will repeat for an event. Each

; event also contains individual sounds. Each sound is defined

; as SoundX where X is a number starting with 1. The sound is

; defined as a frequency,duration. The frequency ranges available
; for the Epson S1C88349 ICU are the following:

>

;0 - for no sound

; 1170
; 1365
; 1638
; 2048
;2340
; 2731
s 3277
; 4096

; The duration field is the number of milliseconds that the sound will sound.

; So, if an entry is found with the following:

- Sound2=4096,100

>

; The above sound would sound a 4 Khz tone for approximately 100 ms. Please note that the watch
; is only capable of handling durations that are a multiple of 31.25 ms. So, whatever you specify
; for a duration wile be rounded down to the closest mutliple of 31.25 ms.

; Sound1=-1,40

>

Confidential Proprietary Information

40-

; Each sound entry that has a -1 will not be treated as a sound. Instead, the second entry is the number
; of times to repeat the series of sounds until the next -1 is found, or the end of the sound event

; has been found. The above description shows that the 1st series of sounds would repeat 40 times

; Any event that is not accounted for in this file will inherit the default

; tone for the event.

; Sounds can be composed of multiple patterns. To start a new pattern, the

; sound entry should be a -1 followed by the repeat count for the next pattern.

; So, the entry for the end of pattern would be:

[Description]
Name=Easy Does It

[Button Beep]
Sound1=-1,1
Sound2=4096,32

[Halfway Timer]
Sound1=-1,1
Sound2=2730,32

[Hourly Chime]
Sound1=-1,1
Sound2=2340,125
Sound3=0,125
Sound4=2340,125

[Alarm]
Sound1=-1,10
Sound2=2048,125
Sound3=1638,63
Sound4=2048,125
Sound5=0,500
Sound6=0,125

[Appointment]
Sound1=-1,10
Sound2=2048,125
Sound3=0,125
Sound4=2048,125
Sound5=0,500
Sound6=0,125

[Timer]
Sound1=-1,40
Sound2=1638,125
Sound3=0,125

[Interval Timer]
Sound1=-1,2
Sound2=1638,125
Sound3=0,125
Sound4=1638,125
Sound5=0,125

Timex Corp. Confidential Proprietary Information

Timex Corp.

Sound6=1638,375
Sound7=0,125

[Comm Error]
Sound1=-1,3
Sound1=4096,250
Sound2=2730,250
Sound3=2048,250
Sound4=1170,250

Confidential Proprietary Information

42-

	INTRODUCTION
	Scope
	Watch Background

	APPLICATIONS
	INSTALLING THE SDK
	WRISTAPPS
	PERIODIC TASKS
	APPLICATION PROGRAMMING INTERFACES
	TUDLSetDeviceType
	TUDLSetAppTitle
	TUDLSetOption
	TUDLGetOption
	TUDLSendData
	TUDLGetData
	TUDLGetDeviceVersion
	TUDLShowDialog
	TUDLForceFullDownload
	TUDLAddItem
	TUDLAddTODItem
	TUDLAddChronoItem
	TUDLAddTimerItem
	TUDLAddIntTimerItem
	TUDLAddAlarmItem
	TUDLAddApptItem
	TUDLAddNoteItem
	TUDLAddOptionItem
	TUDLAddOccasionItem
	TUDLAddContactItem
	TUDLAddScheduleItem
	TUDLAddSoundItem
	TUDLSetTimeLine
	TUDLGetItem
	TUDLGetChronoItem
	TUDLGetAlarmItem
	TUDLGetApptItem
	TUDLGetNoteItem
	TUDLRemoveItem
	TUDLRemoveAllItems
	TUDLRemoveAllApps
	TUDLRemovePeriodicTask
	TUDLAddApp
	TUDLAddAppExt
	TUDLAddPeriodicTask
	TUDLBeep
	Structure Definitions
	Enum Definitions

	VISUAL BASIC NOTES
	RETURN CODES
	OPTION VALUES
	CREATING SOUNDS

